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The paper examines how a passive contaminant disperses along the axis of 
a tube in which the flow is driven by a longitudinal pressure gradient varying 
harmonically with time. This problem is of intrinsic interest and is relevant to 
some important practical problems. Two examples are dispersion in estuaries 
and in the blood stream. By means both of statistical arguments and an analysis 
like that used by Taylor (1953) in the case of a steady pressure gradient it is 
shown that, eventually the mean distribution of concentration satisfies a diffusion 
equation (and is therefore a Gaussian function of distance along the axis) with 
an effective longitudinal diffusion coefficient K( t )  which is a harmonic function of 
time with a period equal to one half of that of the imposed pressure gradient. 
Contrary to the supposition made in most previous work on this problem it is 
shown by examining some special cases that the harmonic terms in K(t )  may 
have a noticeable effect on the dispersion of the contaminant and in particular 
on the rate a t  which it is spreading axially. The size of the effect depends on both 
the frequency and the Schmidt number and is particularly large at low fre- 
quencies. The paper concludes with an analysis of a model of dispersion in 
estuaries which has been used frequently and it is concluded that here too oscilla- 
tory effects may often be noticeable. 

1. Introduction 
When a cloud of dye or other passive contaminant is injected into fluid 

flowing along a tube or channel it spreads out along the tube in the direction of 
flow owing t o  the two influences (i) of longitudinal diffusion and (ii) of the 
interaction between advection and lateral diffusion. Taylor (1953, 1954) showed 
that in steady laminar flow, or statistically steady turbulent flow, in a tube of 
uniform cross-section the result of these processes is that sufficiently long after 
the injection of dye the distribution of concentration C(x, y, z, t )  has a mean over 
the cross-section c(z, t )  (where x measures longitudinal distance) which satisfies 
a diffusion equation of the form 

where U is the discharge velocity and K is a constant ‘effective longitudinal 
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diffusion coefficient ’. Aris (1 956) showed that K is t h e  sum of two terms each 
describing one of the influences mentioned above. I n  laminar flow with molecular 
diffusivity K ,  I< has the form 

K = K +  D, where D = y U 2 a 2 / K ;  (1.2) 

here a is a length representative of the dimensions of the channel cross-section 
and y is a constant depending on the shapes of the channel cross-section and of the 
velocity profile. Taylor (1953) showed that for Poiseuille flow in a circular tube 
of radius a the value of y is &. 

Equation (1 .1)  holds with increasing accuracy as the ratio of the time after 
injection t,o the time taken for a molecule of dye to wander over the cross-section 
increases, i.e. as K t / a 2  increases (Chatwin 1970). For practical purposes (1.1) can 
usually be assumed correct provided that K t / a 2  is of order unity or greater. In  
turbulent flow the value of K given in (1.2), and the parameter K t / a 2  in the above 
discussion, have t o  be amended by replacing K by other variables describing the 
effects of turbulent and molecular diffusion. 

For a cloud of dye the appropriate solution of (1 .1 )  is (Taylor 1953) 

C(x,  t )  = (4nKt)-t exp { - (z - iit)2/4Kt}, (1.3) 

where units of concentration have, for convenience, been chosen so that the 
integral of I? over all xis unity?. Thus the cloud of dye spreads out symmetrically 
about a point moving a t  the discharge velocity, so that its centre of mass xg and 
its variance cr2 satisfy 

m 

a 2  = (z-xXgj2Cdx = 2Kt. 
- w  

The description that has just been given is of dispersion in a steady flow. 
However the same physical mechanisms also cause dispersion in unsteady flows. 
Two such problems which have attracted some attention are the diffusion of 
substances in homogeneous tidal estuaries (see, for example, Bowden 1965), and 
the spreading of tracers injected into the blood (see, for example, Caro 1966). The 
first of these problems will be considered in more detail in 3 4 of this paper. The 
second supplied the motivation for work by Watson (1975)) whose analysis 
provided many ideas for the work presented in $3 2 and 3 of the present paper. 

The primary problem studied in this paper is dispersion in a flow in which the 
longitudinal pressure gradient aplax satisfies 

- p-1 apiax = G cos wt, (1.5) 

f Strictly speaking the variables x and t in (1.3) should be replaced by x - xo and t - to, 
where xo and to are constants depending on the initla1 distribution of concentration and on 
the flow properties. However (1.3) can then be recovered by a new choice of the origins of 
space and time and it can be assumed that this has been done. But this point is of little 
practical importance since calculations (Chatwln 1970) show that &,/a2 is normally much 
less than unity whereas K t / d  nirist be greater than unity for ( l , l ) ,  and thus (1.3), t o  be 
valid. 
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where p is the fluid density and G and w are constants. I n  order to keep the 
analysis well founded the flow will be assumed to be laminar, although, if dis- 
persion in steady flows is a reliable guide, the way in which dye disperses in 
a turbulent flow caused by a mean pressure gradient satisfying (1.5) will be 
similar in type, if not in scale. I n  order to compare the results with those described 
above for steady flows the main aim will be to describe the dispersion a long 
time after release, when, as will be shown later, the effect of a general unsteady 
longitudinal pressure gradient can be predicted from the results by means of 
Fourier analysis. With the exception of some of the results in Holley, Harleman 
& Fischer (1970), previous work has concentrated on the properties of the dis- 
persion (i.e. parameters like xa and a2) when averaged over the period of the 
imposed oscillation but it will be shown in this paper that several potentially 
important oscillatory effects are thereby excluded. 

Inferences from statistical arguments 

It is well known that C(x ,  t )  can be interpreted as the probability density function 
of the longitudinal displacement of a molecule of dye. Let the longitudinal 
displacement and velocity of a molecule of dye at time t be X ( t )  and U ( t ) ,  so that, 
assuming that the molecule is released a t  t = 0,  

rt 
X ( t )  = U(t’)dt’ Jo  

Because of Brownian motion both X ( t )  and U ( t )  are random functions of time. 
Now when t is large the integral in (1.6) can be written as the sum of a large 
number of integrals over a small fixed interval, and a generally accepted form 
of the central limit theorem (which seems to be valid except for some pathological 
random functions which do not arise in dispersion problems) shows that the 
probability density function of X ,  and hence C, approaches a Gaussian form 
(Batchelor & Townsend 1956). This means that 6 has the form [cf. (1.3)] 

6 ( x ,  t )  = (27ra2)4 exp { - ( x  - xg)2/2a2}, (1.7) 

where, using angular brackets to denote a probability average, 

(1.8) I m 
x,(t) = ( X ( t ) )  = 1 X C d X ,  

a2(t) = ( { X ( t )  - (X( t ) )}2)  = 1 ( x  - X Q ) 2  Cdx. 

- m  

m 

- m  

This argument does not rely on the detailed statistical properties of U ( t ) ,  but 
these do affect the behaviour of xg and a2 with time. Since the operations of taking 
a probability average and integrating commute it follows from (1.6) and (1.8) that 

X g ( t )  = (U(t’))dt’. 1: 
When U ( t )  is a stationary random function of time ( U(t’ ) )  is equal to the dis- 
charge velocity ;II (Batchelor, Binnie & Phillips 1955), so that (1.9) is consistent 
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with (1.4). In a flow caused by a pressure gradient of the form (1.5), U ( t )  is not 
a stationary random function of time but it seems obvious, since molecules of 
dye wander over the cross-section and are eventually indistinguishable dynamic- 
ally from molecules of the ambient fluid, that  (U(t')) is eventually equal to the 
average over the cross-section of the longitudinal fluid velocity a t  time t'. This 
is certainly a harmonic function oft' with the same period as the imposed pressure 
gradient,, and will be denoted by u(t'), the overbar notation being consistent with 
its use earlier. Thus in both the steady and the oscillatory flow (1.9) becomes 

From the definit.ion of &? in (1,8), i t  follows that (Taylor 1921) 

a&? 
at 0 
- = 2J ({ U ( t )  - ( U ( t ) ) }  {up') - (U(t!))}) dt'. (1.10) 

In the case when U ( t )  is a stationary random function of time the integrand in 
(1 .lo) is a function only of t - t ' ,  say R(t - t'). Thus assuming that the integral 
converges i t  follows that, for large t ,  

which is consistent with (1.4) provided K is identified as the integral of R(5) from 
zero to infinity. However when U(t) is not a stationary random function of time 
t.he integrand in (1.10) is a function both oft and t' separately and i t  is difficult to 
proceed further with certainty. Since the longitudinal fluid velocity is harmonic 
in time and since the integrand in (1.10) is quadratic in U(t ) ,  it can be reasonably 
conjectured that the right-hand side of (1.10) contains terms proportional to 
cos2wt, sin2wt and cos wt sinwt, or equivalently terms which are constant, pro- 
portional to cos 2wt and proportional to sin 2wt. 

From (1.7) i t  follows by direct differentiation that 

aB - aB a2C 
- + 1 L ( t )  - = K ( t )  - at ax a+ (1.11) 

where G( t )  = dx,/dt, K(t )  = &d@/dt. (1.12) 

Thus the statistical arguments lead, in the steady case, to the results (1. l ) ,  (1.3) 
and (1.4) (Babchelor & Townsend 1956). I n  the oscillatory case considered in 
this paper they suggest that the only difference is that  U and K are periodic 
functions of time, with periods 2nlw and n10 respectively. Thus, according to  
(1.7) and (1.12), the evolution in time of the Gaussian profile of 6 as a function 
of x in the oscillatory case is different from it,s evolution in the steady case. 

2. General theory 
In  this section the conjectures made a t  the end of 1 will be supported by an 

analysis similar to that used by Taylor (1953) to establish (1.1) in the steady case, 
and by Watson (1975) in the present case. This analysis has the advantage that it 
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gives explicit expressions for E(t) and K ( t )  in (1. I d ) ,  which is not otherwise possible 
because of ignorance about t,he detailed statistical behaviour of U ( t ) .  

Under the imposed pressure gradient (1.5) the velocity of the fluid in laminar 
flow in a straight tube of uniform cross-section is in the longitudinal direction 
when any entry effects have died away. Let the value of this velocity be u(y ,  z,  t ) ,  
where y and z measure position in the cross-section. From the Navier-Stokes 
equations 

with zc = 0 on the tube boundary. ( 2 . 2 )  

The equation governing the distribution of concentration C(x ,  y, z, t )  is 

where, with impermeable walls, 

aC/an = 0 on the tube boundary. (2.4) 

By taking t,he mean of (2.3) over the cross-section and using (2.4), an equation is 
obtaineclfor P :  

aC a - azC 
- + -(uC) = K- 
at ax ax2 ' 

where (as in § 1 and throughout this paper) an overbar over a quantity denotes 
its mean over the cross-section. 

The aim of the analysis which follows is to obtain an expression for G i n  terms 
of ii and which can be substituted into (2.5). Now (2.3) has an exact solution of 
the form 

where a is a constant+. This solution is exactly linear in z whereas a long time 
after release the cloud of dye will be spread over a distance much greater than a 
and C will therefore be approximately linear in z in the neighbourhood of any 
point. Hence a good approximation to the value of uCought to be given by 
calculating it from the exact solution (2.6) (Taylor 1953). 

Define non-dimensional variables by 

T = wt, Y = y/a, 2 = %/a. (2.7) 

Then u and C have the forms (using (2.6) for C) 

I u = (G/w) a[ V (  Y ,  2) e- iT] ,  
C = 012 + (aG/w2) W[H( Y ,  2) e-iT].  

7 Note that a solution of the form (2.6) exists however u depends on time and therefore 
for any unsteady longitudinal pressure gradient. Thus, as stated earlier following (1.5), the 
dispersion a long time after release in a flow driven by an arbitrary unsteady pressure 
gradient can be described using Fourier analysis and the results of this paper. 
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Using the governing equations and boundary conditions for u and C gives the 
following equations for V and H :  

( 2 . 9 ~ )  

(2.9b) 

V2V +P2V = ip2; 

V2H+qp2H = -ip2yV; 
V = 0 on the tube boundary; 

aH/& = 0 on the tube boundary; 

iwa2 V 
y = -. ( 2 P  > O), 

where 
V K 

(2.10) 

These equations are due to Watson (1975), who gives solutions for some special 
cross-sections (there are some trivial changes in notation). 

Using (2.8) and noting that 

it follows after some manipulation that 

where an asterisk denotes a complex conjugate, and ii = 5(t)  is the mean of u, 
given by (2.8), over the cross-section, this notation being consistent with that 
introduced in 3 1 and used in (1.12). Explicitly 

(2.12) 

It is useful to denote by D the coefficient of -@/ax that would be obtained 
in (2.11) were the flow steady and driven by the pressure gradient for which 
-p-l ap/ax = G. (This usage of D is of course consistent with its usage in (1.2).) 
Then substituting (2.11) into (2.5) gives the diffusion equation (1.11) with G ( t )  
given by (2.12) and K(t)  satisfying 

where 

E ( t )  = (G/w) 2[ V e-i"t]. 

K(t)  = ~ + D [ A ~ + A ~ c 0 ~ 2 w t + A ~ s i n 2 w t ] ,  (2.13) 

A, = (G2/2~3D)9?[V*(H-H)] ,  A l + i A 2  = (G2/2u3D) [ V ( H - H ) ] .  (2.14) 

The value of A, is in effect given by Watson (1975). I n  trhe steady case U is pro- 
portional to Ga2/v, so that, using (1.2), 

~ 2 / 2 W 3 ~  = riy 1816, (2.15) 

where r is a constant depending only on the shape of the tube cross-section. 
Hence the relations (2.14) become 

Thus the analysis in this section has supported the conjectures made in 9 1 
and in particular the eventual validity of the diffusion equation for 6, (1.11). In  
the steady case this diffusion equation describes 6 for times greater than a2/K,  the 
time taken for a molecule of dye to wander over the cross-section, and it seems 
reasonable that this should also be a sufficient condition in oscillatory flows since 
the transverse mixing is not directly affected by a change in the longitudinal 
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pressure gradient. This conclusion is supported by calculations of the integral 
moments of C in the way described by Aris (1 956) but these will not be presented 
here. Hence (1.1 1) will be assumed valid provided 

Kt/U2 2 1. (2.17) 

Furthermore, when (2.17) holds, the appropriate solution of (1.11) is the Gaussian 
curve (1.7) (Chatwin 1972). I n  this Gaussian curve, according to (1.12), (2.12) 
and (2.13), 

(2.18) 
xy z constant + (G/w2) W [ i  e-iwt],  

du2/dt z 2 ~ + 2 D [ A ~ + A ~ c o s 2 w t + A , s i n 2 w t ] ,  
u2 M constant+2~t+ (D/w)[2AOwt+A,s in2wt-A2cos2wt] ,  

where the constants in the expressions for xg and u2 depend both on the initial 
distribution of C and on the shape of the tube cross-section. 

3. The effect of frequency and Schmidt number on the dispersion 
As explained in 3 1, previous work has mostly assumed the eventual validity 

of the diffusion equation (1.11) but with the important difference from the present 
work that E ( t )  and K( t )  have been replaced by their time averages, which from 
(2.12) and (2.13) are zero and K + D A ~  respectively. It is difficult to see the merit 
of this procedure since the profile of 6 is Gaussian in both cases but it is only the 
time-dependent theory of the present paper which correctly predicts the variation 
in xg and u2 with time. 

For very large times the value of u given by (2.18) becomes indistinguishable 
from that given by the time-averaged procedure and is much greater than the 
amplitude of the motion of the centre of the cloud. Thus the time-averaged 
procedure is asymptotically correct as t -+ 00. But under certain circumstances 
noticeable oscillatory effects not predicted by the time-averaged procedure occur 
for intermediate times. Here attention will be confined to the behaviour of 
da2/dt and ~2 with time. As (2.18) shows, the overall increase in time of the longi- 
tudinal extent of the cloud is modulated by terms harmonic in time whose 
amplitudes may be such that the cloud appears to be periodically expanding and 
contracting, with the secular terms having little apparent effect over intervals 
of the order of one period. Even if the amplitudes of the harmonic terms are not 
large enough for c 3  to behave in this way the modulation may still be readily 
visible (so that da2/dt is noticeably oscillatory) if its frequency is sufficiently large. 
From (2.17) and (2.18) it can be seen that there is a range of values of t for which 
the theory of the present; paper is valid and for which the oscillatory terms in the 
expressions for d d / d t  and a2 make noticeable contributions of the sort just 
described provided the following conditions hold : 

da2/dt noticeably oscillatory if Nl = (A:+Ai)*/Ao 2 O(1);  (3.1) 

(A2,+Ai)f .& ()(I). 
A07 IPI, 

u2 noticeably oscillatory if N, = 



520 P. C. Chatwin 

As is evident from the analysis of 8 2 the values of A,, A ,  and A,, and thus of 
N, and N,, depend only on 1181, 7 and the shape of the cross-section of the tube. 
Now I p I 2  = wa2/v = ( ~ 2 1 ~ ) :  (I/@), so that is a measure of the ratio of the time 
taken for viscosity to smooth out transverse variations in vorticity to the period 
of the imposed oscillation. The Schmidt number 7 is a measure of the ratio of the 
intensities of viscous diffusion and molecular diffusion, so that 7 I PIz is ' a measure 
of the ratio of the time taken for transverse variations in concentration to be 
smoothed out by molecular diffusion to the period of the imposed oscillation. 

The values of 1/31 in the principal mammalian arteries range from about I in 
the aorta of the mouse to about 50 in the aorta of the elephant (McDonald 1960, 
p. go), and the Schmidt number is of order lo3. However the theory developed in 
this paper may not have great significance in these arteries because their lengths 
are so short that blood passes right through them before thorough transverse 
mixing has occurred, i.e. before (2.17) is satisfied (Lighthill 1966). On the other 
hand in capillaries and arterioles where the flows are slow enough for (2.17) to be 
satisfied blood does not behave as a Newtonian fluid. It should be noted that the 
effect of both curvature and turbulence, present in many blood vessels, is to 
enhance lateral mixing and so reduce both K( t )  and the time before the longi- 
tudinal dispersion can be described by a diffusion equation. See the discussion in 
Erdogan & Chatwin (1967). 

In  estuaries where the flows are turbulent the theory developed in this paper 
can be quantitatively applied, but then only empirically, when v and K are taken 
as an eddy viscosity and eddy diffusivity respectively. Thus the effective value of 
7 is of order unity and the value of based on the depth is normally less than 
unity (Holley et al. 1970). However the value of IPI based on the width is usually 
large and, as in the almost steady flows in canals and rivers, the shape of the 
estuarine cross-section is very important when calculating the value of K( t )  
(Fischer 1966, 1972). 

Thus, although there are difficulties in applying the theory of this paper to  give 
precise predictions in important practical problems, it does appear that values of 
181 from very small to very large do occur and it is intrinsically interesting to see 
how the properties of the dispersing cloud vary as the values of 1/31 and 7 vary. 

T h e  case of low frequency 

For frequencies which are such that 1181 = (wa2/v)t  and $1,81 = ( U U ~ / K ) ~  are both 
small the times taken for transverse variations in both vorticity and concentra- 
tion to be smoothed out by viscosity and molecular diffusivity respectively are 
much less than the period of the imposed pressure gradient. Thus the time deriva- 
tives in the equations (2.1) and (2.3) for u and C are much less than the other 
terms, so that u and C are unaffected by the fact that the pressure gradient is 
changing with time. Hence V and H in (2.8) are such that (2.8) become 

1 u x u g (  Y ,  2) cos wt, 
C z5 ax + aC,( Y ,  2) cos wt, (3.3) 

where u, and ax + aC, are the values of u and C that would be obtained with a 
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steady pressure gradient satisfying - p-1 ap/ax = G. Thus (2.11 ) becomes, by 
virtue of the definition of D in (2.13), 

- 
UC w u6- Dcos2wt(aG/ax). 

It follows that (2.13) becomes 

K(t )  = K + D[$ + 8 cos 2 d ] ,  (3.4) 

A ,  = A ,  = g, A ,  = 0. ( 3 . 5 )  

so that (in tubes of any cross-section) 

The result that A ,  = 4 is equivalent to that given by Bowden (1965) for a slightly 
different situation which will be discussed further in $4. Note that, according 
to (3.4), K(t) correctly tends to the steady value K + D [see (1.2)] when w -+ 0 for 
fixed t, and that, for all values oft such that Kt/a2 2 1, da2/dt is noticeably oscilla- 
tory. Also, according to (3.2) there is a range of values oft for which the oscillatory 
terms in the expression (2.18) for n2 make it noticeable contribution. 

The case of high frequency 

When the frequency is such that 1/31 = (wa2/u)l and qh 1/31 = (wa2/K)i are both 
large then, in contrast to the case considered above, the time derivatives in the 
equations (2.1) and (2.3) for u and C are much greater than the diffusion terms, 
so that the velocity and concentration vary very little in the transverse direction 
except near the tube boundary, where thin boundary layers (layers of thicknesses 
of order ( u / w ) f  and (K/w)& for velocity and concentration respectively) are formed 
in which the uniform values of u and C in the core change rapidly so that the 
boundary conditions (2.2) and (2.4) can be satisfied. From (2.9) it follows t,hat 
the core values of V and H are i and 1 respectively, so that 

v w i + q ,  H % 1 + H l ,  (3.6) 

where V, and HI are negligible away from the boundary. Watson (1975) has deter- 
mined V, and HI by means of a boundary-layer analysis and on substitution of 
(3.6) into (2.16) these values lead to 

where la and #a2 are respectively the length of the boundary of the cross-section 
and the area of the cross-section. The value of A ,  in (3.7) is given by Watson 
(1975). 

Since I’l/S is a number nominally of order unity, (3.7) shows that A,, A ,  and A ,  
are numerically very small. All are inversely proportional to the seventh power 
of the large number 1/31 and, additionally, for the high values of ?/J that are 
common in liquids, A ,  is proportional to ? / J - ~  and A ,  and A ,  are proportional to 
7-1. These low values are a consequence of the flatness of the profiles of velocity 
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0.1 
0.3 
0.5 
0.75 
1.0 
1.3 
1.7 
2.0 
3.0 
5.0 

10.0 

1.92 x lo6 - 3.00 8.00 x 10' 
2.37 x lo4 - 3.00 8.88 x 10' 
3.07 x 103 - 2.99 3.18 x 10' 
G.01 x 10' - 2.94 1.38 x 10' 
1.87 x 10' -2.82 7.23 
6.22 x 10' -2.52 3.55 
1.86 x 10' - 1.86 1.17 
8.28 - 1.30 3.25 x lo-' 

2.38 x 2.19 x lo-* - 1.18 x 
7.58 x lo-' - 1.91 x lo-' - 1.52 x lo-' 

2.02 x 10-4  5.115 x 10-5 - 1.04 x 10-4 

4.167 x 10-4 
3.747 x 10-3 
1.047 x 10-3 
2.357 x lo-' 
4.167 x lo-' 
7.007 x lo-' 
1.187 x lo-' 
1.627 x lo-' 
3.227 x lo-' 
4.967 x lo-' 
5.757 x 10-1 

4.16 x 
4.16 x lo-' 
4.16 x 
4.16 x lo-' 
4.16 x 
4.14 x lo-' 
4.08 x lo-' 
4.04 x lo-' 
3.58 x lo-? 
1.98 x lo-' 
0.58 x lo-' 

TABLE 1.  Values of constants for the case of dispersion in a tube of circular cross-section 
of radius a when 7* 9 1, where 7 is the Schmidt number and [PI = (oaz/v)) .  

and concentration across the cross-section, so that even the small amount of 
lateral diffusion that does take place does not lead to  axial spreading of the cloud 
of contaminant. Indeed for sufficiently large values of [PI the value of u2 in (2.18) 
is dominated by 2 ~ t ,  just as it would be were there no motion. It is therefore of 
passing interest only to note that, for large 7, Nl z 7/,/2 $= 1 but that 

N2 = (IPI2,/2)-l < 1 

[see (3 .1)  and (3 .2)] .  Thus the part of da2/dt arising from the motion is always 
highly oscillatory, whereas the oscillatory terms in u2 are never noticeable. 

The case of moderate frequency but high Xchm.idt number 

Values of IpI in the arteries of small animals, and in some human arteries, are of 
order unity, so that neither of the above approximate analyses is useful. However 
the vdue of the Schmidt number is very large in blood, so that, although the 
velocity profile does not have a significant boundary layer, the concentration 
profile does, since 74 \PI > 1 implies that  the time taken for lateral mixing is 
much greater than the period of oscillation. Thus, as in the case of high frequency, 
the time-derivative in equation (2.3) for C is much greater than the diffusion 
term except in a thin boundary layer. From (2.9b) it now follows that, except 
near the walls, 

Use of (3 .8)  with (2.16) leads immediately to  

(3.8) H -iV. 

The result for A ,  reflects the fact that in the bulk of the flow the velocity and 
concentration are exactly out of phase as shown in (3.8); however the boundary 
layer does give a smaller-order non-zero contribution to A,, which is shown in 
the appendix to be given by 

A ,  = (rh2 Ip16)arR (3.10) 

From (3.1) and (3.2) it now follows that 

N1= o(7)y .&2 = O ( l ) ,  (3.11) 
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suggesting that both du2/dt  and, to a lesser extent., u2 are noticeably oscillatory. 
However this conclusion is weakened to some extent by calculations for the case 
of a tube of circular cross-section of radius a, for which (after Watson 1975) 

(3.12) 

The results of the calculations are given in table 1 and it is immediately apparent, 
that the constants of proportionality in (3.11) are numerically small essentially 
because the dominant term in 9[v] in (3.10) cancels out in p- v2 in (3.9); this 
seems likely t o  happen in tubes of other cross-sections. But the calculations do 
show nevertheless that for the high values of 7 common in laminar flows in 
liquids the value of du2/d t  is noticeably oscillatory, but the value of u2 is not. 

4. A model of dispersion in homogeneous estuaries 
Several authors (Bowden 1965; Holley & Harleman 1965; Okubo 1967; 

Holley et a.1. 1970; Fukuoka 1973) have modelled the dispersion of salt and other 
materials in estuaries by considering the dispersion of a passive contamina.nt in 
a two-dimensional open channel in which the longitudinal velocity is prescribed 
as a harmonic function of time. Although this model ignores the important effects 
due to variation of flow properties across the estuary (Fischer 1966) and buoyancy 
(Fischer 1972), its simplicity makes possible the calculation of the effect of flow 
oscillation alone. Suppose therefore that in the open channeI the Iongitudinal 

(4.1) 
velocity u is given by 

u = ( U y / h )  cos wt, 

where the y co-ordinate is measured vertically upwards with y = 0 and y = h 
being the bottom of the channel and the free surface respectively. Then the 
constant U is the velocity amplitude at the free surface. The form (4.1) has been 
chosen for comparison with the work of the authors mentioned above, all of 
whom considered i t ;  othermore realistic profiles could be dealt with by the 
methods of this paper. Assume further, with the above authors, that (2.3) holds; 
then (2.3) has an exact solution of the form [cf. (2.8)] 

C = ~ + ( ~ U / O ) W [ F ( Y ) ~ - ~ * ] ,  

where Y is now y / h  a.nd the other variables are those used previously. Then P 
satisfies [cf. (2.9)] 

(4.2) 

where p2 = i W h 2 / K .  (4.3) 

D = U2h2/120~, (4.4) 

P”+pZP = -ip2Y with F’ = 0 a t  Y = O , l ,  

Calculations analogous to those described in 5 2 lead to the form of K(t )  given 
in (2.13), where now 

and 
6 0 ~  6 0 ~  I 2(1-c0sp) 

+ ~i - pssinp 
A , = A , = - X , ,  A - -x2 ,  x,+ix,=iL-- 

wh2 - wh2 

That K ( t )  is oscillatory in this model of estuary dispersion was pointed out by 
Holley & Harleman (1965), and the value of A ,  is equivalent to that given by 
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0 4 8 

IPI 
FIQURE 1. Graphs of A,, A ,  and A,  given by ( 4 4 ,  where [ p [  =  ha/^)). 

Okubo (1967) and Holley et al. (1970), although these authors used different 
methods and obtained the result in other forms. 

For low frequencies when [pI < 1 the arguments in $3,  or direct expansion 
of (4.5), give A ,  M (Bowden 1965), A ,  E 4 and A ,  M 0, so that (3.4) again holds. 
Now one difference between the model of this section, in which the longitudinal 
velocity is prescribed, and that of 5 2, in which the longitudinal pressure gradient 
is prescribed, is that here t'he velocity amplitude is independent of frequency 
(and viscosity), so that A,, A ,  and A ,  decay to zero as the frequency increases 
less rapidly than they do according to (3.7). From (4.5) i t  follows by direct 
expansion that, when Ip( 1, A ,  % 60/(pl4 (Okubo 1967; Holley et al. 1970), 
A ,  z 6O/(pu/* and A ,  % 5/lpI2. Detailed graphs of A,, A ,  and A ,  are given in 
figure 1. From (4.5) i t  follows that, according to this model, da2/dt is always 
noticeably oscillatory and similar arguments to those in 8 3 show that there is 
a period when u2 is noticeably oscillatory provided (pl 5 1. According to figures 
in Holley et nl. (1970) the values of lpl in most estuaries are somewhat less than 
unity. 

One feature of the velocity profile in real estuaries is that there is a variation 
of phase across the cross-section. Such a variation ,is present in the velocity 
profiles arising in the earlier sections of this paper and partly explains the 
differences between the results in those sections and those in the present section. 
I n  order to include such an effect here the velocity profile given by (4.1) may be 
modified such that 

(4.6) 

Provided that 9 is known calculations of the type described in this section can be 
carried out. A simple example occurs with 

,2434 = (UY/4 cos [cot + $J(Y/h)l. 

$J(Ylh) = W h ,  (4.7) 
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where 6 is a constant. The detailed results will not be given here because they are 
rather long and it is not known whether (4.7) is realistic, but it is interesting to note 
that, for the values of lpl typical of real estuaries for which, when S = 0, A ,  z 4, 
the calculations give 

A,  E ( i o p )  [(4S4- 14S2- 72) + (2S2+ 72) cosS+ (2S2+ 48) 6sin81. (4.8) 

Numerical evaluation of (4.8) shows that as S increases from zero the value of A ,  
rises from $ to a maximum value of about 1.06 near S = 5, after which A ,  falls 
to zero. For a value of 6 near unity (which means that the velocity reverses 
direction about 2 h sooner a t  the free surface than a t  the bed) the increase in A,  is 
about 12 %. The increase in A ,  for low and moderate values of S means an increase 
in the time-averaged longitudinal diffusion coefficient, which is to be expected 
because of the increased shear when 6 $. 0. 

The results of this section have been presented simply to show that here also 
the methods used in the main part of the paper lead to the Gaussian form of (? 
given by (1.7) with a value of K ( t )  given by (2.13) and (4.5). Other velocity 
profiles than (4.1) or (4.6) will lead to the same conclusions. There seems little 
point in pursuing the model further in view of its obvious limitations. 

I wish to thank E. J. Watson for showing me his work on this topic and for 
discussing it with me. I am also grateful to Professor K. F. Bowden for his help. 

Appendix 
Here is derived the approximate result (3.10) for A ,  valid for moderate fre- 

quency and high Schmidt number with 7) [PI 9 1. Note first that on applying 
Gauss's theorem to the exact equation (2.9) for H and using the boundary 
conditions it follows that 

so that from (2.16) 

B = -iv, (A1) 

(A21 A ,  = - (r/r [PI6) W r n .  

Furthermore from (2.9) it follows after some obvious manipulation that 

V.{V*VH-HVV*}+(r+1)/32V*H = -i7P2VV*-i/32H, 

so that from (Al ) ,  (A2) and the boundary conditions in (2.9) it can be seen that 

where n is the outward normal and, as in the text, S is the non-dimensional area 
of the cross-section. This result is exact. 

It is explained in the text that for moderate frequency and high Schmidt 
number with ?,d 1/31 9 1 the profile of concentration H is approximately equal 
to - i V everywhere except in a thin boundary layer, so write 

H = -iV+H,. (A 4) 
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The equation satisfied by Hl follows from (2.9) and is 

V2H, + 7P2H1 = iP2(i - V ) ,  (A 5)  

aH& = iaV/an on the tube boundary. (A61 

with the boundary condition 

The terms on the left-Land side of (A5) are of the same order in the boundary 
layer, which therefore has a thickness of order 7-3 [PI-’. Since aV/an is of order 
1/31 on the boundary it follows from (A6) that HI is of order 7-4 in the boundary 
layer. Since V is zero on tthe boundary it. now follows from (A4) that H is also 
of order 7-4 in the boundary layer. Thus (A 3) reduces to 

A ,  = (r/r2 1/316) {9[71+ Oh-4 lPl-l)l, 
which is equivalent, as required, to (3.10) since 7-4 1PI-l < 1 and 7 is independent 

It can be verified that when 7-t \PI-’ < 1 equations (A5) and (As) lead to 
a value of HI which is of order 7-l in the core, so that the boundary-layer assump- 
tion used in the above argument is consistent to the degree of approximation 
required. 

of ?I, 
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